extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×D4)⋊1C23 = C2×S3×D8 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | | (C3xD4):1C2^3 | 192,1313 |
(C3×D4)⋊2C23 = C2×D8⋊S3 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | | (C3xD4):2C2^3 | 192,1314 |
(C3×D4)⋊3C23 = S3×C8⋊C22 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 24 | 8+ | (C3xD4):3C2^3 | 192,1331 |
(C3×D4)⋊4C23 = C22×D4⋊S3 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | | (C3xD4):4C2^3 | 192,1351 |
(C3×D4)⋊5C23 = C2×D4⋊D6 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | | (C3xD4):5C2^3 | 192,1379 |
(C3×D4)⋊6C23 = C22×S3×D4 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | | (C3xD4):6C2^3 | 192,1514 |
(C3×D4)⋊7C23 = C22×D4⋊2S3 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | | (C3xD4):7C2^3 | 192,1515 |
(C3×D4)⋊8C23 = C2×D4⋊6D6 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | | (C3xD4):8C2^3 | 192,1516 |
(C3×D4)⋊9C23 = C2×S3×C4○D4 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | | (C3xD4):9C2^3 | 192,1520 |
(C3×D4)⋊10C23 = C2×D4○D12 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | | (C3xD4):10C2^3 | 192,1521 |
(C3×D4)⋊11C23 = S3×2+ 1+4 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 24 | 8+ | (C3xD4):11C2^3 | 192,1524 |
(C3×D4)⋊12C23 = C2×C6×D8 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | | (C3xD4):12C2^3 | 192,1458 |
(C3×D4)⋊13C23 = C6×C8⋊C22 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | | (C3xD4):13C2^3 | 192,1462 |
(C3×D4)⋊14C23 = C2×C6×C4○D4 | φ: trivial image | 96 | | (C3xD4):14C2^3 | 192,1533 |
(C3×D4)⋊15C23 = C6×2+ 1+4 | φ: trivial image | 48 | | (C3xD4):15C2^3 | 192,1534 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×D4).1C23 = C2×D8⋊3S3 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 96 | | (C3xD4).1C2^3 | 192,1315 |
(C3×D4).2C23 = D8⋊13D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 4 | (C3xD4).2C2^3 | 192,1316 |
(C3×D4).3C23 = C2×S3×SD16 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | | (C3xD4).3C2^3 | 192,1317 |
(C3×D4).4C23 = C2×Q8⋊3D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | | (C3xD4).4C2^3 | 192,1318 |
(C3×D4).5C23 = C2×D4.D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 96 | | (C3xD4).5C2^3 | 192,1319 |
(C3×D4).6C23 = C2×Q8.7D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 96 | | (C3xD4).6C2^3 | 192,1320 |
(C3×D4).7C23 = SD16⋊13D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 4 | (C3xD4).7C2^3 | 192,1321 |
(C3×D4).8C23 = S3×C4○D8 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 4 | (C3xD4).8C2^3 | 192,1326 |
(C3×D4).9C23 = SD16⋊D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 4 | (C3xD4).9C2^3 | 192,1327 |
(C3×D4).10C23 = D8⋊15D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 4+ | (C3xD4).10C2^3 | 192,1328 |
(C3×D4).11C23 = D8⋊11D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 4 | (C3xD4).11C2^3 | 192,1329 |
(C3×D4).12C23 = D8.10D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 96 | 4- | (C3xD4).12C2^3 | 192,1330 |
(C3×D4).13C23 = D8⋊4D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 8- | (C3xD4).13C2^3 | 192,1332 |
(C3×D4).14C23 = D8⋊5D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 8+ | (C3xD4).14C2^3 | 192,1333 |
(C3×D4).15C23 = D8⋊6D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 8- | (C3xD4).15C2^3 | 192,1334 |
(C3×D4).16C23 = S3×C8.C22 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 8- | (C3xD4).16C2^3 | 192,1335 |
(C3×D4).17C23 = D24⋊C22 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 8+ | (C3xD4).17C2^3 | 192,1336 |
(C3×D4).18C23 = C24.C23 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 48 | 8+ | (C3xD4).18C2^3 | 192,1337 |
(C3×D4).19C23 = SD16.D6 | φ: C23/C2 → C22 ⊆ Out C3×D4 | 96 | 8- | (C3xD4).19C2^3 | 192,1338 |
(C3×D4).20C23 = C2×D12⋊6C22 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | | (C3xD4).20C2^3 | 192,1352 |
(C3×D4).21C23 = C22×D4.S3 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | | (C3xD4).21C2^3 | 192,1353 |
(C3×D4).22C23 = C2×Q8.13D6 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | | (C3xD4).22C2^3 | 192,1380 |
(C3×D4).23C23 = C12.C24 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | 4 | (C3xD4).23C2^3 | 192,1381 |
(C3×D4).24C23 = C2×Q8.14D6 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | | (C3xD4).24C2^3 | 192,1382 |
(C3×D4).25C23 = D12.32C23 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | 8+ | (C3xD4).25C2^3 | 192,1394 |
(C3×D4).26C23 = D12.33C23 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | 8- | (C3xD4).26C2^3 | 192,1395 |
(C3×D4).27C23 = D12.34C23 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | 8+ | (C3xD4).27C2^3 | 192,1396 |
(C3×D4).28C23 = D12.35C23 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | 8- | (C3xD4).28C2^3 | 192,1397 |
(C3×D4).29C23 = C2×Q8○D12 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | | (C3xD4).29C2^3 | 192,1522 |
(C3×D4).30C23 = C6.C25 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | 4 | (C3xD4).30C2^3 | 192,1523 |
(C3×D4).31C23 = D6.C24 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | 8- | (C3xD4).31C2^3 | 192,1525 |
(C3×D4).32C23 = S3×2- 1+4 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | 8- | (C3xD4).32C2^3 | 192,1526 |
(C3×D4).33C23 = D12.39C23 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | 8+ | (C3xD4).33C2^3 | 192,1527 |
(C3×D4).34C23 = C2×C6×SD16 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | | (C3xD4).34C2^3 | 192,1459 |
(C3×D4).35C23 = C6×C4○D8 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | | (C3xD4).35C2^3 | 192,1461 |
(C3×D4).36C23 = C6×C8.C22 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | | (C3xD4).36C2^3 | 192,1463 |
(C3×D4).37C23 = C3×D8⋊C22 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | 4 | (C3xD4).37C2^3 | 192,1464 |
(C3×D4).38C23 = C3×D4○D8 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | 4 | (C3xD4).38C2^3 | 192,1465 |
(C3×D4).39C23 = C3×D4○SD16 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 48 | 4 | (C3xD4).39C2^3 | 192,1466 |
(C3×D4).40C23 = C3×Q8○D8 | φ: C23/C22 → C2 ⊆ Out C3×D4 | 96 | 4 | (C3xD4).40C2^3 | 192,1467 |
(C3×D4).41C23 = C6×2- 1+4 | φ: trivial image | 96 | | (C3xD4).41C2^3 | 192,1535 |
(C3×D4).42C23 = C3×C2.C25 | φ: trivial image | 48 | 4 | (C3xD4).42C2^3 | 192,1536 |